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A closed tube is considered in which the oscillations of a gas column are driven by 
the sinusoidal motion of a piston. The case where the frequency of the gas column 
in the tube lies near one of its resonant frequencies is of special interest. The aim 
of this paper is to extend the theory of Chester (1964), who has given solutions in 
the inviscid case and for very small boundary-layer friction, to cases of frictional 
effects of arbitrary strength. This is done by means of a combination of analytical 
and numerical methods. Different methods are applied for different strengths of 
the boundary-layer friction. The cases where the influence of the Stokes boundary 
layer is either very strong or very weak are not especially difficult to treat. The 
main part of this paper considers cases of intermediate friction, i.e. when the 
shock strength has grown rather small owing to the influence of the Stokes 
boundary layer. To obtain an overall view of the phenomena which occur in the 
Merent regions, a number of solutions have been calculated. 

1. Introduction 
This paper discusses the disturbances produced in a closed gas-filled tube by 

the oscillations of a piston a t  one end. If the displacement of the piston a t  time t 
is lsinwt (where 1 < L),  acoustic theory says that the particle velocity in the gas 
is given by sin (wx/u,) cos wt 

u = lw 
sin(wL/u,) ’ 

where a, is the speed of sound in the undisturbed gas and L the length of the tube. 
There are certain frequencies where acoustic theory breaks down. Chester (1964) 
gave a theory for the solution in the frequency band around each resonant 
frequency, that is when sin(wL/u,) is near to 0. He developed the equation to 
solve the problem to second order and gave the solutions in the inviscid case as 
well as for small effects of boundary-layer friction. In  this paper methods are 
given to solve the problem for boundary-layer effects of arbitrary strength. 
Chester’s analysis uses the following simplifying assumptions. 

(i) The Stokes boundary-layer thickness is small compared with the tube 
radius. 

(ii) The Mach number of the flow is small compared with unity everywhere in 
the tube. 
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(iii) Terms which arise in the boundary layer can be derived from the linearized 

(iv) In  the one-dimensional equations describing the mainstream, terms of 

(v) The wall of the tube is kept at constant temperature. 

boundary-layer equations. 

higher than second order are neglected. 

The influence of the boundary-layer effects is taken into account by a convolution 
integral in the continuity equation. 

The first-order equations give a first approximation (ul,a,) to the particle 
velocity and sound speed (u, a) ,  i.e. the acoustic solutions 

2 
u,+- 2- I 

2 

The suffix ‘0’  refers to values in the undisturbed gas. At one end (x = 0) of the 
tube there is a rigid barrier, so the first-order boundary condition u = 0 at  x = 0 
requires 

f =  -g .  (3) 

A second approximation (u, + u2, a, +a,) is obtained by iteration. The boundary 
conditions are imposed on this combination of the first- and second-order 
solutions. 

Neglecting effects of compressive viscosity (which are very small in general) 
this procedure leads to the following equation: 

u(x,t) = u,+u2 = a. 1 f ( t-- I) - f ( t + 3 ) + y x ” f + - 3  at + f z ( t + ; ) )  

-I---- 

where 

and R cross-sectional area of tube. 
2 -  perimenter 7 

_ -  

(5) 

v, Pr and Af are respectively the coefficient of kinematic viscosity, the Prandtl 
number and the ratio of specific heats. 

The relation (4) for u is now required to satisfy the boundary condition 

u = Iwcoswt a t  x = L, ( 6 )  

whereby solutions near resonance are considered, that is when 
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for some integer N .  For simplicity, only the case N = 1 is considered. It is not 
difficult to deduce solutions for other values of N .  

With the help of (7) we have approximately 

where the replacement in the second line is made following Chester, to increase 
the range of the solution. Equation (3) can now be integrated [by use of (6) and 

where 41 
E = -  

(2+ 1) L cos (wL/a,)’ 

J 
and c is some constant of integration; r will be used as a frequency parameter 
instead of w.  

Equation (9) will be the basis for the following calculations. Sometimes i t  is 

(11)  
useful to replace f by 

f (t) = s * m 7  

where h = wt, and to introduce a friction parameter 

which is essentially the ratio of the boundary-layer thickness to the radius of the 
tube, divided by the square root of the Mach number of the piston velocity. This 
is a quotient of two quantities which were assumed to be small. 

With the help of (11) and (12), (9) can be rearranged: 

It can be seen from (1 3) that g is a function of h and contains the two parameters 

(14) 
T and s: 

9 = d h ;  r ,  8). 

There is always exactly one solution g(h; r ,  s) that belongs to a pair of parameters 
( r ,  s 2 0). The existence of g is implied physically; the uniqueness follows in the 
course of the solution from the condition that the mean value off has to be zero 
(as required by acoustic theory; this has been shown by Seymour & Mortell 
1973) and the fact that discontinuities of rarefaction are forbidden, i.e. the 
entropy of the system cannot grow smaller. 

For the following presentation, it is helpful to mention some important facts 
about Chester’s inviscid solution. 
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2. The inviscid solution 
When the effects of viscosity are ignored, (9) can be written as 

where r n  
27 = w t + Q 7 ~ ,  J f ( 7 ) d ~  = 0, 

0 

and B is some constant still to be determined. Now f is required to have zero mean 
value. The discussion of (15) and (16) together with the definition (10) shows that, 
if Irl 2 1, an appropriate value for B can always be found such thatfis continuous 
and has the same period as the piston; discontinuities are not allowed as long as 
I r I 2 1 because every discontinuity of compression would imply one of rarefaction. 
If Irl < 1, there is no solution as long as B is different from zero. If B = 0, there is 
a unique solution if only discontinuities of compression are admitted. In  this case 
the solution can be written in the form 

(17) f = e4{ (2r/n) A cos T}, 

and the sign always changes when 

For Irl B 1 the acoustic solution is obtained: 

n wl sin wt 
f = -&-COS27 = - 

8r 2a0 sin (wL/ao) * 

In  the following sections different methods are developed to solve (9) with the 
purpose of giving a successful theory in every domain of the r ,  s plane. As a first 
step (9) is solved for small values of 8.  

3. Solution for small values of s 

If the evaluation of the convolution integral 

which occurs in (9) led to a sine and had the same period as the piston 
oscillation, a solution similar to (17) could be found. The question arises of 
whether such a replacement can be justified to a certain degree of approximation. 

When f is any periodic function with zero mean value, it can be written in the 
form 

+ m  + m  

n=--03 n=-co 
nS.0 niO 

f ( t )  = 2 fnexp (inwt) = x c2)exp (inot); (21) 

the convolution applied tof(t) gives 



Resonant acoustic oscillations 283 

FIGURE 1. Comparison between (a)  J ~ [ f ( t ;  r = 0, s = O ) ] ,  ( b )  J~[f(t; r = I ,  s = O ) ]  and 
(c) the corresponding first harmonic, J&[f(t; T = 0, s = O ) ]  = JF1[f(t; T = 1, 8 = O ) ] .  

and when f is convoluted m times, 

J Y [ f ]  = J F [ J F . .  . J-[f] . . . 3 
+ W  

= (sz)m( - l)m 5 (:)'"fnexp ( i n w t )  = cLm)exp (inwt).  (23) 
n=--co m w  n = - W  

n90 

Obviously JY approaches a sine asymptotically in the limit rn -+ 00: 

I 
I n  an iteration procedure when the convolution is repeatedly used, i t  is seen 
that the first term is dominant. A comparison between J [ f ( t ;  r = 0 , s  = O ) ] ,  
J [ f ( t ;  r = 1, s = O ) ]  and the corresponding first Fourier components (see figure 1) 
shows that a good approximation forfis obtained when JF[f] is replaced by the 
first term of its Fourier expansion, i.e. 

J-Jf] = 3 ? J p [ f ( i ) ]  cos[w(t-f)]df. 

In  this case (9) changes to 

c - &sin wt = {f, - ( 2 ~ 1 ~ )  ~ $ 2  + JF1[fO]. 
It will be shown that fo is a good basis for a numerical iteration. An appropriate 
transformation Yconverts (26) to 

(c + (417~2) (er2 - e, 3)) - 46, sin (wt  - 27,) = (fo - (2r0/77) &)2, 

fO(7) = 4{2ro/n -t cos (7 - 7 0 ) )  N g O ) ,  (28) 

where 27 = wt+*n. (29) 

(27) 
i.e. fo is a 'Chester solution' if we disregard the changed phase angle; fo can be 
written in the form 



284 J .  Keller 

n T O  

2s 
- 

t 

I I 
I I 

I 
I \ i  I 

FIGURE 2. The phase angle T,, us. r for small values of s. 

The times at which the shocks occur now are given by 

7 = T o + $ ,  (30) 

where, as a consequence of the analogy with Chester’s ‘inviscid theory’, 

ro = sin$. 

By inserting (28) in (25) JF1 is found to be 

J F ~  = - ~ ( E O / E ) ~  s{COS (d - 2~~ - $ - $ 7 ~ )  + 25 cos (wt - 2~~ - 3$ - in)}. (32) 

If this is introduced in (as), a comparison with (27) shows that the transforma- 

(33) 
tion F is given by 

er2 = Eor& 
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This can also be interpreted in the following way: the sum of the piston displace- 
ment function and the convolution integral is replaced by a new displacement 
function. By means of (33) and (34), 7, and # can be calculated from r and s;fo can 
be obtained when the new parameters are inserted in (28). 

If s is small compared with 1,  the imaginary part of (34) can be simplified to 

With (31), this gives 7, as a function of r (see figure 2). 

following equation has to be solved: 
The solution g,(h) can now be used for an interation. At the nth step the 

gn-,(h - c) a-4 da. 
n.4 Sw 0 

c n + ( n  g ( A ) - -  :)’ =- i s inh+-  

Numerical calculations will show (see $ 8) that this procedure is convergent as 
long as s 5 0.4; i t  is used only for values of r for which shocks do occur. The 
bigger 1.1 and (or) the smaller s is, the smaller is the difference between g,(h) and 
g(h) = lim g,(h). 

To find the solution for the whole ‘shock domain’ (that is the part of the 
r ,  s plane in which shocks do occur), refined methods will be needed as s increases; 
the first step will be carried out in the next section. For small values of s, Chester 
also gave a method of obtaining the solution (taking into account the boundary- 
layer effects). Indeed, as long as s stays small, the agreement between the results 
of Chester and the curves given in this paper is very good. 

n-+w 

4. Solution for ‘intermediate’ values of s in the shock domain 
The numerical results obtained by means of the methods given in $ 3  show that 

generally the shapes of g,(h) and g(h) do not differ very much, but a refinement 
becomes necessary, especially in the neighbourhood of the shocks, when s 
increases. 

4.1. The signal shape behind the shock 

The higher Fourier components of the convolution integral are responsible for 
the ‘rounding’ of the signal shape behind the shock. It will be proved first that 
the signal f leaves the shock parabolically, i.e. 

exists and is different from zero, assuming that At, t, 2 0. Here t, is the time 
co-ordinate at  which the shock occurs. The point ( r ,  s) considered lies in the (open) 
shock domain. 

Proof. The signalf(t) can be split into two parts, 

f( t)  = f1P) +f2(t), (38) 
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such that fi is a continuous function and 

exp ( - aft - t,,)) H(t - tsn) - 
n = - w  

(39) 

where the strength of the shock (amount of the discontinuous jump) is given by 

Af2(t) = 2 k ~ f .  (40) 

Note that f2 has zero mean value. The times at which the shocks occur are given by 

(41) 

where n is an integer and t, = ( 2 ~ ~ + # - + n ) / w ;  H(t) is the Heaviside function 
defined by 

(42) 

tsn = t, + 2nn/w, 

The ‘damping exponent’ a is taken for convenience to be large, i.e. 

exp ( - 2na/w) < 1. (43) 

Notice that JF[ f 3 = JF[fl] + JF[f2]. A short calculation gives 

+ W  I exp(inwt) + w  
JF[fJ N -sks x 7 = Z c,exp(inwt) (44) 

n= - an + afw (in)+ I Z = - - m  
n+O 

+ W  

n = - m  
n+O 

JF[fl] = d,exp(inwt). 

9&*0 

If n a/@ we have approximately (in + aw)-l N (in)-l and therefore 

(45) c, N n-3, dn = 0, 

whereby O(n-2) is neglected. It can be shown (see 3 4.2) that the same propor- 
tionality appears when the following series is analysed: 

where a 
From this i t  can be seen that 

w .  This is a parabola within some short interval behind every shock. 

(where At, t, 2 0 )  exists and is different from zero. Equation (9) requires thesame 
behaviour for the quadratic term (f - 2r~+ /n )~ ,  so that 

(f(t,+At) - 2 ~ d / n ) ~ -  lirn(f(ts+t,)-2r€B/n)2 
lim (48) 
A h 0  (A;;o 

(where At, t, 2 0) exists and is different from zero. Obviously the relation (37) 
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follows from this, because if (f - 2 r ~ 4 j n ) ~  has the property (37), then f has it too, 
as f (t, + 0 )  - 2rd/rr = 0 is excluded. 

For the following calculations the origin of the t axis is changed such that 
t = 0 a t  a shock. What was called t, thus far is now set equal to - to, so that the 
displacement function in (9) changes to 

- ts  sin w(t - to). (49) 

To analyse the high-frequency components off the following form of the solution 

is assumed: m 

f ( t )  = C antin, (50) 
n=O 

where t 2 0. The derivative off ( t )  can be written in the form 

f ' ( t )  = 2kd  8(t) + &t-* + A(t ) ,  (51) 

where 8(t) is the delta function and A( t )  is defined everywhere. The derivatives 
(with respect to t )  of  the convolution integral and the quadratic term in (9) are 
now given by 

$ (f ( t )  - $ €4) = 2f ' ( t )  ( f ( t )  - ;€*) 

= 2(A( t )+2kdS( t )  +ia,t-+) (kd+a,t*+O(t)). (53) 

Owing to (9) and the relations (52 )  and (53) we obtain 

a, = 4/3/(2"+ 1). (54) 

Note that a, does not depend on L, 1 or w ,  i.e. the only geometric variable which 
has an influence on the 'parabola' in the pressure signal (behind the shock) is 
the radius of the tube. The coefficient a, is essentially the ratio of the boundary- 
layer thickness and the radius of the tube. 

4.2. Interrelations between the Taylor series and the Fourier series off ( t )  
It was seen t,hat on the right-hand side of the origin (i.e. the shock) a Taylor 
series in powers of t t  appears. On the left-hand side only integer powers o f t  occur; 
this can be seen as follows: the singular points on the time axis (the origin is one 
of them) are now t,, = n2n/w. 

If the following limit from negative values o f t  is considered: 

(55)  

where rn 2 0, the singularity at the origin is not included in the convolution 
integral; so this limit exists for arbitrary values of m, i.e. J'[f(t)] is analytic on 
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the left-hand side of the origin (supposing that the range considered 
enough). So we write 

/ m  

C ant*, for 0 6 t 6 At < 2 ~ 1 0 ,  
n=O 

f ( t )  = 

b2,tn for 0 2 t 2 -At. 

The sudden change in the Taylor series across the shock is reflected in the high- 
frequency terms in the Fourier series off. The function f ( t )  can be written in 
the form 

+N m 

n= - N  n = N + l  
f ( t )  = C c, exp ( inwt)  + C (c ,  exp (inwt) + c-, exp ( - inwt)). ( 5 8 )  

The first, finite sum is obviously analytic for arbitrary (finite) values of the 
integer N .  To calculate the limit of the Fourier coefficient c, for n > N ,  an 
artificial factor exp (-a It]) is introduced in (57) and the limit a + 0 is taken in 
the final result. A short calculation gives 

when n > N and N is large enough. For k = 0, the first term corresponds to 
the jump, and the second to the parabola [see (45)]. 

4.3. A rejined ‘ansatz’t 

The reasons stated above lead to an improved ansatz of the form 

f ( t )  =el(?+cos(&wt+#) -a,exp -Lt* +boexp - y  --t  , (60) I ( Zo 1 ( (:: 1) 
in the interval 0 < t < 2n /o .  The second term on the right-hand side has the form 
of (57a) and the third has the form of (57b). 

In  the first part we still require that 

2 n  t I (61) 
exp (-:(-) ) < I, exp( -2) < 1, 

and that the transformation (r,, e,) - ( r ,  B )  is given by (34). 1 
As the quadratic term (f ( t )  - 2 r ~ * / n ) ~  cannot be discontinuous (even at t = 0) i t  
follows that 

(62) a0 = bo, 

and as f has zero mean value, y is given by 

Equation (9) will be treated now as a system of equations for Fourier coefficients. 

t This word is used for ‘trial solution, partly to be justified a posferiori’. 
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The quadratic term and the convolution integral can be written in the form 

(64a)  
2r + m  

(f ( t )  - €4) = z qn exp (;nut), 
n = - m  

When the ansatz (60 )  is inserted in the left-hand side of ( 6 4 a )  and (64b)  the 
coefficients qn and j ,  are obtained by means of a Fourier analysis. For large 
values of n we obtain for the leading terms 

where D = ~,,cos~-a,. (66 )  

The highest order of n appearing in qn andj, is O(n-8) [see (45 ) ] .  As the displace- 
ment function of the piston is a sine, i t  has no influence on a comparison of such 
terms. A connexion between terms O(n-3) can be obtained when (65 )  is inserted 
in (64 ) ,  and (64 )  is introduced in (9); this leads to the relation 

which gives a, = 4/3/(8+ 1). (68 )  

This result was obtained previously in a slightly different way [see (54)l .  In  
analogy a comparison of terms O ( w 2 ) ,  i.e. 

lim (n2(qn - n-8 lim (m3qm))> + lim (n2(jn - n-4 lim (m%jm))) = 0, (69 )  
n-m *m n+ w *a, 

gives 

The ansatz (60 )  has actually not enough degrees of freedom to satisfy the relation 
(70) because y is already given by the mean-value condition (63) .  However, a t  
least for small values of s (when a, --f 0) the conditions (63 )  and (70) coincide 
asymptotically. Thus the condition (67 )  is valid in the whole open shock domain, 
but (69)  only for s --f 0. 

The influence of the second and third term on the right-hand side of (60 )  on 
the shock strength is still small (in its absolute value) when s becomes com- 
parable to 1; however, when the shock strength has become small, the relative 
error in the amount of the discontinuous jumps is nevertheless significant, 
because for numerical methods (see $8) it is especially important to  keep this 
relative error small. We have to take into account the corrections in the shock 
strength due to the second and third term on the right-hand side of (60 )  as soon 
as the considered point ( r ,  s) lies near the edge of the shock domain. The condition 

I9  FLM 77 
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F1a-E 3. A relation between the two exponential functions in the 
'refined ansatz'. (a) A = (s/Ao)*, ( b )  A = (+lo)'. 

that the quadratic term has to be continuous and the fact that f has zero mean 
value give in this case [replacing (62) and (63)l 

or slightly rearranged (see figure 3) 

where A, = aO/(2e)4 and A = n-y/u. 

Equation (68) has two asymptotes: 

(73) 

A = (s/Ao)B when A + 0, (74) 

and A = when A -+ co, (75) 

which agrees with (63). The limit s -+ 0 corresponds to the second asymptote 
(75). The agreement of (63) and (70) gives a measure of the distance between the 
actual point (s/Ao, A) and the asymptote (75) (see figure 3). 

For the further discussion of the solutions in the shock domain, numerical 
methods are used (see $8). When s or r becomes large compared with 1, terms of 
linear acoustics dominate the solutions and the nonlinear effects can be treated 
as a small disturbance. 
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FIGURE 4. Diagram for the shock strength at a fixed value of e calculated (a) by means 
of a simplified energy method and (b )  by mems of the energy equation (whereby Jp[j] has 
been replaced by J F [ ~ , , ] ) .  

19-2 
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5. The acoustic domain 

elementary solution is 
With the termf2 neglected in (9) a problem in linear acoustics is obtained. The 

(2r/7r) sin wt + is sin ( w t  + &r ) 
(4r/7r)2+ (4,/2/n)rs+s2 ’ f ( t )  = €4 

or in standard notation 
(2r/n) sin h + is sin ( A  + $77) 

( 4 r / ~ ) ~  + (4  42/77) rs + s2 ’ = 

and in the special case when s = 0, 

f ( t )  = (n - /Sy )  €4 sin wt, g(h) = (77/8r) sin A. (78) 

The solution (77) is now used as a basis for an iteration, whereby the term g 2 ( A )  is 
considered as a small disturbance. At the nth step of the iteration the following 
equation is solved: 

(79) +g2,(A)) + 6 sin h = (4r/77) g,(h) + s / d  gn(A - a) a-4 dcr. 

The constant c,-~ has to be chosen suitably, i.e. 

so the condition that g should have zero mean value is satisfied. 
When the quadratic term is written in the form of a Fourier series 

m+O 
g, can be given as follows: 

gn(A) = 
(2r/n)  sin h + is sin ( A  + in) 

( 4 r / ~ ) ~  + 442rs/77 + s2 

4r S 
-;;(hi~)cos (mh) + hL2)sin (mh)} + -{hi;) cos (mh + 471) + h(;)sin (mA + in)} 

m4 +; 
m-1 

m 
(82) 

Such an iteration method converges outside a certain neighbourhood of (r = 0, 
s = 0). 

6. Summary of methods 
At this stage we recall that methods were sought which permit the construction 

of a solution for any given values r , s  2 0. To discuss the applicability of the 
different methods in the previous sections we use figure 5.  

The line C refers to Chester’s inviscid theory (see $ 2 ) .  In  the domain B, where s 
is still small, strong shocks occur in the neighbourhood of r = 0. The solutions in 
this domain have been discussed in $3. For the remaining part of the shock 
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- 1  0 

r 

1 

FIGURE 5. Map of all domains considered. 

domain S, a method has been developed which is a refinement of the one given 
in $ 3  (and naturally also covers the domain B). At the curve which encloses 
the domain S the shocks just disappear. Beyond this curve the solutions are 
continuous. Three similar curves are plotted in figure 5; they give the points 
where the amplitude of the second harmonic of a solution f reaches a certain 
percentage (10 yo, 15.42 yo or 20 yo) of the amplitude of the first harmonic. 
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At 15.42 % the curve crosses the points (r = ~f: 1, s = 0). Somewhat beyond this 
curve the method given in $ 5 can be applied. The remaining uncovered part is 
now entirely contained in the domain I .  Here solutions can be found with the 
help of perturbation theory. The calculation may be started from a neighbouring 
solution or from an analytically iterated acoustic solution. Unfortunately the 
numerical methods lead to rather lengthy calculations in this domain but on the 
other hand the shapes of the signals do not vary much here. Thus, if we do not 
need a very exact solution, we may use an interpolation method. In  the domain 
E a simplified method will be given to calculate the strength of the shock (see $ 7 ) .  

An elementary consideration shows that the amplitude of the acoustic solution 
g(h) [see (77 ) ]  becomes a maximum for a fixed value of s when 

4rln + slJ2 = 0. (83) 

This acoustic resonance line (traced double) is plotted in figure 5 ;  i t  is an approxi- 
mate symmetry line for the different domains. (This has already been noticed by 
Merkli 1973.) The following section gives numerical methods based on the 
analysis given in the previous sections. 

7. The energy balance 
7 .1 .  Xirnpli$ed calculations of the j u m p s  by an energy method 

When the approximate solutionf, (see 5 3 )  is inserted in the convolution integral, 
the error off,, is small over the whole period except in a narrow neighbourhood of 
each shock. Thus we can expect that the integration constant c (obtained by the 
mean-value condition) in ( 9 )  can be set equal to is, as long as (r ,  s) is close to 
( r  = 0, s = 0). At t = 0 we obtain from ( 9 )  

Be,, + 4~ sin wt,, = (et cos 4 - ao)2 

Alternatively, we could interpret (84) formally as a relation for the energy balance 
applied to a small interval around a shock co-ordinate. If (27 )  is considered a t  
the same time, 

*(E,+Esinwt,,) = ( c o s ( ~ + ~ n ) + ~ c o s ( ~ - & r ) } ,  
&+1 nu (85) 

we obtain for the difference between (84) and (85) 

at- 2a,& cos 9 +- ( - "0)a{0412 cos (4 + in) + 0 . 7 3 4 ~ 0 ~  (9 -in)> = 0, (86 )  
&+1 n w  

using " 1  1 " 1  1 
21 1.912, C -- 21 1.067. 

n=l n42n + 1 x -- nt 2n - 1 

The magnitude of the shock is given by (40); by means of (60) and (40) it  can be 
written in the form 

(88) 2 k d  = 2(s,  cos 9 -a,,). 
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Equations (33), (34) and (86) make it possible to calculate k for any values (r ,  s), 
assuming that r and s are small compared with 1 (see figure 4, figure 5, domain E ) .  

When the signals are calculated numerically, the results are often obtained in 
the form of a Fourier series. I n  such cases it needs much effort to give an exact 
value of the shock magnitude. As the energy balance is very sensitive to errors 
in the magnitude of the jump, it is sometimes useful to apply the energy equation. 
It will be shown now that this equation can be deduced from (9). 

7.2. The energy equation 

When (9) is differentiated with respect to t ,  we obtain, after a simple modification, 

where h(t)  = f ( t  - L/a,); the left-hand side is the piston velocity. By means of (2) 
the pressure at  the piston can be given in the form 

P(t )  = -%POh(t). (90) 

When (89) is multiplied by -pw/27-r and integrated over the period (with respect 
to t )  we obtain 

With the help of (40) the first term on the right-hand side can be integrated to give 

where gS is the rate of energy dissipation per unit area of the shock front. The 
term on the left-hand side of (91) can be interpreted as the rate of energy addition 
per unit area of the piston. The second term on the right-hand side of (91) gives 
the rate of energy dissipation per unit cross-section a t  the walls due to viscous 
and thermal effects (see appendix). It can be noted that energy considerations, 
without the use of Chester’s equation, were made previously by Betchov (1958) 
and Temkin (1968). Here, the energy equation is found as a consequence of (9). 

To calculate the magnitude of the jumps, the approximate solutionf, (see 5 3) 
can be inserted in the left-hand-side term and in the second right-hand-side term 
of (91). By means of (92) i t  is possible to calculate k. These results (see figure 4 ( b ) )  
are valid in about the same domain as the results obtained by the method given 
in 5 7.1 (see figure 4(a ) ) .  
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8. Numerical calculations 

approximate solutions to numerical solutions is sketched. 
In  this section the computation scheme which leads from the analytical 

8.1, Computation in the domain B 
An approximate solutionf, can be obtained from (34). This solution is inserted in 
the convolution integral in (36). With the integration constant c, chosen suitably, 
the minimum of the quadratic term 

( f l ( t )  - (2rln) €*I2 (93) 

becomes zero. At the corresponding t co-ordinate there is a change between the 
two solutionsft ( t )  andfc(t) of the quadratic equation [see (36)]. The co-ordinate 
a t  which the shock occurs is determined by the condition that fi shall have zero 
mean value; a t  this point the solution changes again. Now the cycle of iteration 
is closed. 

It is advisable to take into account higher harmonics of the convolution integral 
successively with the stage of iteration; otherwise, the ‘peaks ’ which occur in 
f,(t) would falsify the higher harmonics off,+,(t) considerably for small values of 
n. The sequence of points t’,”’ (which refers to the shock co-ordinates) is a sensitive 
measure of the convergence of this iteration method. To obtain very exact values 
of the shock strength we may use a linear interpolation method on the left side 
of the shock, and/or a parabolic interpolation on the right side; we note that 
convergence of the Fourier series off  is not uniform. The advantage of this 
method is its simplicity. The general treatment which is given in $4 necessitates 
more complicated methods. 

8.2. Computation in the domain 8 

The ansatz (60) is used as a basis for this method; r, or $ (r,  = sin $) and e, are 
input parameters which may be chosen arbitrarily. The constant a, is known 
[see (S t?) ] .  The fact that the quadratic term in (9) has to be continuous leads to the 
relation 

b,-a,exp(---(;) a, 2n t ) =a, -b ,exp(-w) .  2nY 
(94) 

By means of (71), y can be eliminated and a, is the only remaining unknown. 
The ansatz (60) is inserted in the quadratic term and in the convolution integral, 
whereby the relation (33) is used. For a given value of a, we obtain a piston dis- 
placement function. A certain value of a, is determined when we require that 
the amplitudes of the higher harmonics of the piston displacement should be as 
small as possible. Of course there is some arbitrariness in such an optimization 
but it has to be noted that the higher harmonics have their minimum at about the 
same value of a,. It is proposed to look for the minimum of the geometric mean 
value. The difference between this (almost sinusoidal) displacement function 
and its first harmonic is now considered as a small perturbation; it is designated 
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FIGURE G .  Map of the points in the r, s plane referring to the 
calculated solutions. 

by D [ f ( t ) ] .  The difference between the approximate solution f , ( t )  [see ansatz 
( S O ) ]  and the exact solutionf(t) is called A f ( t ) :  

f(t) - f a  = A f ( t ) .  (95) 

The corresponding constant of integration is written, in analogy, as 

C - C ,  = Ac. (96 )  

( 9 7 )  

When this is inserted in ( 9 )  the following relation is obtained: 

AC + D[Af] = 2Af(fu - 2rd/m) + Jp[Af]. 
This perturbation equation is linear; for the solution it is important to note that 
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A f  ( f ,  - Brdl-rr) is a continuous function and B [ A f ]  consists predominantly of 
low-frequency harmonics; with a suitable choice of a,,, BCAf J almost vanishes. 
A similar perturbation calculation is used in that part of the domain I where the 
convergence of the iteration method is bad. 

9. Results and discussion 
To obtain an overall view, a number of solutions in every domain have been 

computed. A systematic selection of predetermined pairs ( r ,  s) requires long 
computing times; the position of the points ( r ,s)  (referring to the computed 
signals) appears rather arbitrary (see figure 6) but was chosen for convenience, 
such that the whole plane is covered by computed cases with reasonable density. 
Six different paths in the r ,  s plane containing a sequence of points (each) have 
been chosen to illustrate how g(h; r ,  s) depends on the parameters (r,  s) within 
a frequency band around the fundamental frequency. In  table I the values 
referring to the calculated signals (see also figure 7)  are shown. An interesting 
fact emerges when the magnitude of the shocks 2 k d  is considered as a function 
of the friction parameter s a t  r = 0. The function k(s,  r = 0)  has been found to be 
a straight line (with a very good numerical accuracy) : 

k(s , r  = 0) 1: 1-8. (98) 

A comparison with experiments of Saenger & Hudson (1960) shows good 
agreement. When these theoretical results are compared with experiments of 
Cruikshank (1972) for small values of s, the same differences appear as in a 
comparison between these experiments and Chester’s theoretical results made 
by Cruikshank. On the other hand, as was pointed out before, the present theory 
for small s agrees very well with Chester’s results. There must be a fundamental 
disagreement between Cruikshank’s experimental results and Chester’s theory; 
the acoustic symmetry line (83) is contrary to the results of Cruikshank. It was 
pointed out after (83) that the results of Merkli (1973) agree qualitatively very 
well with the remarks about this symmetry. 

10. Subharmonic nonlinear resonances in closed tubes 
It can be seen that (4) has further classes of discontinuous solutions: when the 

piston is oscillating at one-half of any (odd) resonance frequency, the second- 
order terms in (4) produce resonant effects. The amplitudes of these ‘subharmonic 
solutions’ are O(M). Such a calculation has been carried out by Keller (1975) 
using the results of the present theory. The inviscid theory shows discontinuous 
solutions in a bandwidth of the order A w l w  = O ( M )  around the subharmonic 
resonance. However, such discontinuities only appear as long as the influence of 
the boundary layer is very small. The problem of taking into account viscous 
effects can be solved in the same way as Chester’s resonant solutions are treated 
in the present theory. The results of such a calculation have already beenincluded 
in Keller (1975). A comparison between that theoretical curve and an experiment 
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Figure 7(a) 

Signal 

1 
2 
3 
4 
5 
6 
7 
8 

r 

0.500 
0.500 
0.500 
0.500 
0.520 
0.523 
0.512 
0.600 

Figure 7(c) 

1 - 0.500 
2 - 0.500 
3 - 0.500 
4 - 0.500 
5 - 0.514 
6 - 0.514 

Figure 7 (d)  
1 - 1.050 
2 - 0.950 
3 - 0.800 
4 - 0'600 
5 - 0.400 
6 - 0.200 
7 0.020 
8 0.200 
9 0.400 

10 0.600 
11 0.800 
12 0.850 
13 0.950 
14 - 1.150 

Figure 7 ( f )  
1 1.000 
2 0.850 
3 0-558 
4 0.372 
5 0-194 
6 0.01 1 
7 -0.175 

S 

0.000 
0.100 
0.200 
0.300 
0.403 
0.539 
0.660 
0.900 

0.000 
0.100 
0.200 
0.300 
0.430 
0-526 

0*200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 
0.200 

0.000 
0.200 
0.592 
0.709 
0.830 
0.995 
0.989 

Figure 7 ( b )  

Signal r 

1 0.000 
2 0.012 
3 0.012 
4 0.012 
5 0.018 
6 0.016 
7 0.015 
8 0.014 
9 0.012 

10 0.01 1 
11 0.020 

Figure 7 (c )  contd 

7 - 0.514 
8 - 0.515 
9 - 0.522 

10 - 0.538 
11 - 0.512 
12 - 0.500 

Figure 7 (e) 

1 - 0.746 
2 - 0.647 
3 - 0.522 
4 - 0.399 
5 -0.187 
6 0.009 
7 0.169 
8 0-321 
9 0.451 

10 0.558 
11 0.800 
12 - 1.250 

Figure 7 (f) contd 

8 - 0.335 
9 - 0.512 

10 - 0.629 
11 - 0.746 
12 - 0.846 
13 - 0.956 
14 - 1.050 
15 - 1.000 

8 

0.000 
0.100 
0.200 
0.300 
0.386 
0.496 
0.616 
0.725 
0.847 
0.995 
2.000 

0.588 
0.746 
0.845 
1.005 
1-047 
2.500 

0.959 
0.927 
0.845 
0.794 
0.727 
0.681 
0.653 
0.630 
0.609 
0.592 
0.580 
1.200 

1.019 
1.047 
1.004 
0.959 
0.759 
0.574 
0.200 
0~000 

TABLE 1. Values of r and s for the computed solutions 
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n 

h 

2n 

2 n  

FIGURES 7 (a) and (b ) .  For caption see p. 302. 
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2 n  J 

h 

FIGURES 7(c)  and (d).  For caption see p. 302. 
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A 

FIGURE 7. The function g 'us. h ( =  w t )  for different values of the parameters (r,  8 ) .  

(a) T N 0.5; ( b )  r - 0; (c) r - -0.5; (d)  a = 0.2; (e) intermediate values of s; (f) @,a) 
points near the edge of the shock domain. 



Resonant acoustic oscillations 303 

of Merkli (1973) showed averygood agreement, as far as the shapeof the measured 
pressure signal is concerned; there are no data available that permit a full 
quantitative check thus far. 

This work was prepared as a Ph.D. thesis under the direction of Prof. Nikolaus 
Rott. 

Appendix 
The particle velocity in the tube can be written in the form [see (2)] 

u(x , t )  = a, f t - -  { ( a”,) -f (t+:)]* 
The velocity in the boundary layer u, (x, y, t )  satisfies the following equation: 

aublat = V, a2ubpg, (A 2) 

with u = ub outside the boundary layer and ub = 0 at the wall (y = 0). The xate 
of energy dissipation per unit cross-section of the tube owing to viscous and 
thermal effects is 

Making use of the boundary conditions (A 2 )  gives 

where 5 is the Heaviside operator. When this is interpreted, we obtain with the 
help of (A I)  

Making use of periodic properties off we can see that 

I 

where h(t) = f ( t -  Lla,). When (A 5) and (A 1) are inserted in (A 3), we obtain 
with the help of (5) and (A 6 )  
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